

Question (1) (20 Marks)

A- <u>State True or False & Correct the False</u>

- 1) The hydrological cycle describes the movement of water below the earth surface.
- 2) The total volume of water in the world is varying due to climate changes.
- 3) Runoff is the variety of ways by which water moves under the land.
- 4) A double mass curve is used to determine the data of a specific rain gauge.
- 5) An isohyet is a line that has different values for the rain.

B- During two months, a catchment received 254 mm of rain with evapo-transpiration of 85 mm and losses to groundwater of 20 mm. The catchment area is 65 km². (2*5 = 10 Marks)

- 1) What is the expected runoff (liters)?
- 2) If the water use is 160 liters / person / day, how many people can be served by this water?

Question (2) (30 Marks)

A- Find the average rainfall depth?

B-Draw the hyetograph?

Time	8:00	8:21	8:33	8:56	9:26	10:06
Accumulated	0	3	23	56	110	145
depth (mm)						

(20 Marks)

(10 Marks)

Best Wishes

Dr. Alaa El-Hazek

(5*2 = 10 Marks)

<u>A Model Answer</u>

MT - MSc, (609), 18 / 4 / 2017

(20 Marks)

A-	<u>(5</u>	*2 =	= <u>10 Marks)</u>
1	The hydrological cycle describes the movement of water below the earth	F	below & above
	surface.		
2	The total volume of water in the world is varying due to climate changes.	F	constant
3	Runoff is the variety of ways by which water moves <u>under</u> the land.	F	across
4	A double mass curve is used to <u>determine</u> the data of a specific rain gauge.	F	check
5	An isohyet is a line that has <u>different</u> values for the rain.	F	constant

B-

1) $\Delta S = P - R - G - ET$ Assume, $\Delta S = 0$ R = P - G - ET = 254 - 85 - 20 = 149 mm $R = 0.149*(65*10^6)*10^3 = 9.685*10^9 \text{ lit}$

2) No of people = $9.685 \times 10^9 / (160 \times 60) = 1,008,854$ Capita

Question (2)

10:06

145

Question (1)

A- P = [(5*5) + (20*15) + (15*25) + (10*35)] / 50P = 21 mm

B-(20 Marks) **Interval Intensity**, Accumulated Interval Interval Time from Time Depth, mm Depth, mm Time, hr Start, hr mm/hr 08:00 0 0 0 08:21 3 3 0.35 0.35 8.57 23 0.2 0.55 08:33 20 100 08:56 56 33 0.38 0.93 86.09 09:26 110 54 0.5 1.43 108

0.67

2.1

35

(30 Marks)

<u>(10 Marks)</u>

52.5

(2*5 = 10 Marks)

Final 2nd Term Exam Date: 20 / 5 / 2017 Water Resources Management CVE 609 Duration : 3 hours

• Answer all the following questions.

No. of questions: 4 (Two Pages)Y.Total Mark: 200 Marks

• Illustrate your answers with sketches when necessary.

Question (1)

- A- <u>State True or False & Correct the False</u>
 - 1) The surface runoff for clay more than that for sand.
 - 2) In some areas, the porosity = 1.
 - 3) For dry soil, the soil moisture content = the porosity.
 - 4) Horton's equation assumes that infiltration rate is varied with time.
 - 5) Permeability is a property of the porous media only, not the fluid.

B- The cumulative annual precipitation (2009 - 2016), mm, for gauge A and the average of some other gauges is shown in the table.

- 1) Draw the double mass curve?
- 2) What is the annual precipitation for gauge A at the year 2010?
- 3) Determine the date of the variation of gauge A?
- 4) Find a correction ratio to adjust incorrect values?
- 5) Calculate the correct cumulative precipitation for gauge A at the year 2015?

;e	e A and the average of some						
	Year	Average Gauges	Gauge A				
	2009	37	33				
	2010	73	61				
	2011	114	94				
	2012	150	124				
	2013	184	148				
	2014	238	206				
	2015	282	252				
	2016	314	283				

(25+25 = 50 Marks)

A- For a catchment, the initial and final infiltration capacities are 3.5 and 0.6 mm/hr with time constant of 4.1 hr⁻¹.

$f_t = f_c + (f_0 - f_c)e^{-kt} $	$F = f_c T + (1/k) (f_0 - f_c) (1 - e^{-kT})$
,	

1) Determine the infiltration rates after 0, 10 min, 20 min, 1 hr, 1.5 hr and 2 hr?

2) Find the total volume of infiltration over the 2 - hr period?

B- The given table shows the rainfall data for a watershed that is 560 acre and has 228.7 acre-ft volume of runoff. Determine the ϕ - index for the watershed?

Time,	Rainfall intensity,
nr	in/nr
0 - 2	1.4
2 - 5	2.3
5-7	1.1
7 – 10	0.7
10 - 12	2.75

C-	For the	confine	ed aquifer	with	two	piezome	ters sh	iown	in
the	figure,	what is	direction (of the	grou	ındwater	flow?	Why	?

(25+25 = 50 Marks)

Question (4)

A- A 16 inch diameter well supplies 0.5 cfs to a small farm. The well completely penetrates a 60 ft thick unconfined aquifer. The drawdown in the well is 10 ft and the radius of influence is 1500 ft in the current steady-state operation. The farm would like to increase the pumping rate to 0.67 cfs with well drawdown of 14 ft.

$$Q = (\pi K) \frac{(h1^2 - ho^2)}{ln \frac{r1}{ro}}$$

Determine whether the new situation will or will not affect the farm's neighbor 2000 ft away?

B- A well fully penetrates a 25 m thick confined aquifer. After a long period of pumping at a constant rate of 0.05 m³/sec, the drawdown at distances of 50 m and 150 m from the well were observed to be 3 m and 1.2 m, respectively.

$$Q = (2\pi bK) \frac{(h1 - ho)}{\ln \frac{r1}{ro}}$$

Find the transmissivity?

Examiners Board: Dr. Alaa El-Hazek

(25+20+5 = 50 Marks)

<u>A Model Answer</u>

Final - MSc, (609), 20 / 5 / 2017

(25+25 = 50 Marks)

Question (1)

А-			
1	The surface runoff for clay more than that for sand.	Т	
2	In some areas, the porosity $= 1$.	F	porosity $\leq 0.75 ~(\neq 1)$
3	For dry soil, the soil moisture content = the porosity.	F	saturated
4	Horton's equation assumes that infiltration rate is varied with time.	Т	
5	Permeability is a property of the porous media only, not the	Т	
	fluid.		

B-

1) The double mass curve.

Year	Average Gauges	Gauge A
2009	37	33
2010	73	61
2011	114	94
2012	150	124
2013	184	148
2014	238	206
2015	282	252
2016	314	283

- 2) At the year 2010, $P_A = 61 33 = 28 \text{ mm}$
- 3) The variation of gauge A starts at the year 2013.
- 4) Original Slope = (124 33) / (150 37) = 91 / 113 = 0.81
 Varied Slope = (283 148) / (314 184) = 135 / 130 = 1.04
 Correction Ratio = 0.81 / 1.04 = 0.78
- 5) The correct cumulative precipitation for gauge A at the year $2015 = 252*0.78 \approx 197$ mm

Question (2)

(30+20 = 50 Marks)

A-	B-
1) In the atmosphere:	1) Silt
$\mathbf{P} = \mathbf{ET}$	<i>,</i>
100 + 385 = 61 + 424	2) Clay loam
2) On land:	
P = ET + R + G	
100 = 61 + 38 + 1	
3) Over oceans and seas:	
$\mathbf{P} + \mathbf{R} + \mathbf{G} = \mathbf{E}$	
385 + 38 + 1 = 424	

(25+20+5 = 50 Marks)

A-

 $f_t = f_c + (f_0 - f_c)e^{-kt}$ 1)

t, hr	0	0.167	0.333	1	1.5	2
f _t , mm/hr	3.5	2.04	1.35	0.648	0.606	0.601

2)
$$F = f_c T + (1/k) (f_0 - f_c) (1 - e^{-kT})$$

F = 1.91 mm

B- Q = Volume / Area = (228.7*12) / 560 = 4.9 in Area above the ϕ - index = 4.9 in $2(1.4 - \phi) + 3(2.3 - \phi) + 2(1.1 - \phi) + 3(0.7 - \phi) + 2(2.75 - \phi) = 4.9$ Try $\phi = 1.5$ 3(2.3 - 1.5) + 2(2.75 - 1.5) = 4.9 $\phi = 1.5$ inch/hr

C- The direction of the groundwater flow is from point (1) to point (2). Because $H_1 > H_2$ (or $E_2 > E_1$).

(25+25 = 50 Marks)

 $r_{0} = 8 \text{ in } Q = 0.5 \text{ cfs} \qquad r_{1} = 1500 \text{ ft}$ $h_{1} = 60 \text{ ft} \qquad h_{1} - h_{0} = 10 \text{ ft} \qquad h_{0} = 60 - 10 = 50 \text{ ft}$ $0.5 = (\pi * \text{k}) \frac{(60^{2} - 50^{2})}{\ln \frac{1500}{8/12}} \qquad \text{k} = 0.00117$ $r_{0} = 8 \text{ in }$ k = 0.00112 ft/s $h_0 = 60 - 14 = 46 \text{ ft}$ $h_1 - h_o = 14 \text{ ft}$ $0.67 = (\pi * 0.00112) \frac{(60^2 - 46^2)}{\ln \frac{r_1}{8/12}}$ $r_1 = 1609.98 \text{ ft} \approx 1610 \text{ ft} < 2000 \text{ ft}$

The new situation will not affect the farm's neighbor 2000 ft away.

B- $Q = 0.05 \text{ m}^3/\text{s}$ $h_2 - h_1 = 3 - 1.2 = 1.8 \text{ m}$ b = 25 m $r_1 = 50 \text{ m}$ $r_2 = 150 \text{ m}$ $Q = (2\pi bK) \frac{(h2 - h1)}{ln\frac{r2}{r1}}$ $0.05 = (2\pi * 25 * K) \frac{(1.8)}{\ln \frac{150}{50}}$

 $K = 1.9 * 10^{-4} m/s$

 $T = K * b = 1.9*10^{-4} * 25 = 0.00475 m^2/s$

Mid 2nd Term Exam, 50 Marks Date: 2 / 5 / 2017 Special Studies in Water Resources Eng. Ph D, CVE 713, Duration : 1 hours

Question (1) (20 Marks)

A- State True or False & Correct the False

(5*2 = 10 Marks)

- 1) The total volume of water in the world is varying due to climate changes.
- 2) Water lost due to transpiration is greater than water lost due to evaporation.
- 3) Evaporation from oceans is greater than evaporation from the land.
- 4) In South Africa, evaporation in January is smaller than evaporation in August.
- 5) Water as surface runoff moves due to kinetic energy.

B- During three months, a catchment received 381 mm of rain with evapo-transpiration of 128 mm and losses to groundwater of 30 mm. The catchment area is 65 km², and 63 mm of the water is to be stored. (2*5 = 10 Marks)

- 1) What is the expected runoff (liters)?
- 2) If the water use is 160 liters / person / day, how many people can be served by this water?

A- Find the average rainfall depth?

Question (2) (30 Marks)

(10 Marks)

B- A catchment has 6 rain stations that are located as shown in the figure. (20 Marks) Using horizontal and vertical lines only, calculate the average rainfall depth employing Thiessen polygon method?

Station No	X _i (km)	Y _i (km)	P _i (mm)
1	10	15	44
2	10	45	55
3	32	15	48
4	32	45	58
5	54	15	52
6	54	45	59

<u>A Model Answer</u>

MT - Ph D, (713), 2 / 5 / 2017

(20 Marks)

А-	(5*2 = 10 Marks)			
1	The total volume of water in the world is <u>varying due to climate changes</u> .	F	constant	
2	Water lost due to transpiration is greater than water lost due to evaporation.	F	smaller	
3	Evaporation from oceans is greater than evaporation from the land.	Т		
4	In South Africa, evaporation in January is smaller than evaporation in	F	greater	
	August.			
5	Water as surface runoff moves due to kinetic energy.	F	potential energy	
1			(gravity)	

B-

1) $\Delta S = P - R - G - ET$ $R = P - G - ET - \Delta S = 381 - 128 - 30 - 63 = 160 \text{ mm}$ $R = 0.16^{*}(65^{*}10^{6})^{*}10^{3} = 10.4^{*}10^{9} \text{ lit}$ 2) No of people = 10.4*10⁹ / (160*90) = 722,222 Capita

Question (2)

Question (1)

A- P = $[(5*5) + (20*15) + (15*25) + (10*35)] / 5$	0
P = 21 mm	

(2*5 = 10 Marks)

(30 Marks)

B-

Thiessen Method

Station No	X _i (km)	Y _i (km)	P _i (mm)	Area (Km ²)
1	10	15	44	21*30 = 630
2	10	45	55	21*25 = 525
3	32	15	48	22*30 = 660
4	32	45	58	22*25 = 550
5	54	15	52	21*30 = 630
6	54	45	59	21*25 = 525
				$A_{\rm T} = 3520$

P = (44*630) + (55*525) + (48*660) + (58*550) + (52*630) + (59*525) / 3520 = 52.25 mm

(20 Marks)

(10 Marks)

Benha University Faculty of Engineering at Shoubra Civil Engineering Department PhD, Water Resources and Hydraulics Engineering

Final 2nd Term Exam Date: 20 / 5 / 2017 Special Studies in Water Resources Engineering CVE 713 Duration : 3 hours

- Answer all the following questions.
- Illustrate your answers with sketches when necessary.
- The exam consists of two pages.

Question (1)

- A- State True or False & Correct the False
- 1) Horton's equation assumes that infiltration rate is varied with time.
- 2) Evapo-transpiration is the loss of water from a vegetated surface through the combined processes of soil evaporation and plant transpiration.
- 3) When infiltration capacity exceeds the rainfall intensity, there will be surface runoff.
- 4) An aquifer is an impermeable water-bearing geologic formation.
- 5) The well is an artesian if the ground surface rises above the piezometric surface.

 B- The cumulative annual precipitation (2009 – 2016), mm, for gauge A and the average of some other gauges is shown in the table. 6) Draw the double mass curve? 		Average Gauges	Gauge A
		37	33
7) What is the annual precipitation for gauge A at the year 2010?	2010	73	61
 8) Determine the date of the variation of gauge A? 9) Find a correction ratio to adjust incorrect values? 	2011	114	94
 10) Calculate the correct cumulative precipitation for gauge A at the year 2015? 	2012	150	124
	2013	184	148
	2014	238	206
		282	252
	2016	314	283
Question (2)	(20 +	30 = 50 Ma	rks)

(25+25 = 50 Marks)

Total Mark: 200 Marks

No. of questions: 4

•

•

A- From the figure, find the soil texture for the following combinations:

- 1) 10% sand, 85% silt, 5% clay?
- 2) 40% sand, 30% silt?

Clay

40 30 20 10

Percentage by Weight Sand

60

50

B- The table shows the rainfall data for a watershed that is	5
560 acre and has 228.7 acre-ft volume of runoff.	
Determine the ϕ - index for the watershed?	

Time,	Rainfall intensity,	
hr	in/hr	
0 - 2	1.4	
2 - 5	2.3	
5 - 7	1.1	
7 - 10	0.7	
10 - 12	2.75	

C- For the dam shown in the figure, show that the piezometric head ($h = (P/\rho g) + z$) on the surface AB = H₁ at any point on the surface (i.e. show that $h_1 = h_2 = h_3 = H_1$)?

100

90 80 70

Question (4)

(20 + 30 = 50 Marks)

A- An unconfined aquifer is 95 ft thick, and is penetrated by 8 inch diameter well that pumps at a rate of 0.11 cfs. The radius of influence is 500 ft, the permeability is $4*10^{-4}$ ft/sec.

$$Q = (\pi k) \frac{(ho^2 - hw^2)}{\ln \frac{ro}{rw}}$$

Determine the drawdown at the well?

B- A 16 inch diameter well supplies 0.5 cfs to a small farm. The well completely penetrates a 60 ft thick unconfined aquifer. The drawdown in the well is 10 ft and the radius of influence is 1500 ft in the current steady-state operation. The farm would like to increase the pumping rate to 0.67 cfs with well drawdown of 14 ft.

$$Q = (\pi K) \frac{(h1^2 - ho^2)}{ln \frac{r1}{ro}}$$

Determine whether the new situation will or will not affect the farm's neighbor 2000 ft away?

Examiners Board: Dr. Alaa El-Hazek

A Model Answer

<u>Final - Ph D, (713), 20 / 5 / 2017</u> (25+25 = 50 Marks)

Question (1)

А-			
No	Statement	T/F	Correction
1	Horton's equation assumes that infiltration rate is varied with time.	Т	
2	Evapo-transpiration is the loss of water from a vegetated surface	Т	
	through the combined processes of soil evaporation and plant		
	transpiration.		
3	When infiltration capacity exceeds the rainfall intensity, there will	F	will not be
	<u>be</u> surface runoff.		
4	An aquifer is an impermeable water-bearing geologic formation.	F	permeable
5	The well is an artesian if the ground surface rises above the	Т	
	piezometric surface.		

B-

1) The double mass curve.

2) At the year 2010, $P_A = 61 - 33 = 28 \text{ mm}$

- 3) The variation of gauge A starts at the year 2013.
- 4) Original Slope = (124 33) / (150 37) = 91 / 113 = 0.81
 Varied Slope = (283 148) / (314 184) = 135 / 130 = 1.04
 Correction Ratio = 0.81 / 1.04 = 0.78
- 5) The correct cumulative precipitation for gauge A at the year $2015 = 252*0.78 \approx 197$ mm

Question (2)

(20+30 = 50 Marks)

А-	B-
P = [(5*5) + (20*15) + (15*25) + (10*35)] / 50 $P = 21 mm$	1) In the atmosphere: P = ET 100 + 385 = 61 + 424
	2) <u>On land:</u> P = ET + R + G 100 = 61 + 38 + 1
	3) Over oceans and seas: P + R + G = E 385 + 38 + 1 = 424

(20+25+5 = 50 Marks)

(20 + 30 = 50 Marks)

A- *The soil texture for the following combinations:*

1) Silt

Clay loam 2)

B- Q = Volume / Area = (228.7*12) / 560 = 4.9 in Area above the ϕ - index = 4.9 in

$$2(1.4 - \phi) + 3(2.3 - \phi) + 2(1.1 - \phi) + 3(0.7 - \phi) + 2(2.75 - \phi) = 4.9$$

Try $\phi = 1.5$ 3(2.3 - 1.5) + 2(2.75 - 1.5) = 4.9

 $\phi = 1.5$ inch/hr

C- h = (P/
$$\rho$$
g) + z = (ρ g*d/ ρ g) + z = d + z = d + (H - d) = H

 $h_1 = h_2 = h_3 = H_1$

Question (4)

Question (4) A- $Q = (\pi k) \frac{(ho^2 - hw^2)}{ln \frac{ro}{rw}}$ $0.11 = (\pi * 4 * 10^{-4}) \frac{(95^2 - hw^2)}{ln \frac{500}{4/12}}$ $h_w = 91.5 \text{ ft}$ $Drawdown = h_o - h_w = 95 - 91.5 = 3.5 \text{ ft}$

Q = 0.5 cfs**B-** $r_{w} = 8$ in $h_0 = 60 \text{ ft}$ $r_{o} = 1500 \text{ ft}$ $h_{\rm o}-h_{\rm w}=10~ft$ $h_w = 60 - 10 = 50 \text{ ft}$ $0.5 = (\pi * k) \frac{(60^2 - 50^2)}{ln \frac{1500}{8/12}}$ k = 0.00112 ft/sQ = 0.67 cfs $r_w = 8$ in $h_0 = 60 \text{ ft}$ $h_o - h_w = 14 \text{ ft}$ $h_w = 60 - 14 = 46 \text{ ft}$ $0.67 = (\pi * 0.00112) \frac{(60^2 - 46^2)}{ln \frac{r0}{8/12}}$ $r_o = 1609.98 \ \text{ft} \approx 1610 \ \text{ft} < 2000 \ \text{ft}$

The new situation will not affect the farm's neighbor 2000 ft away.